Пчелы и АІ

О себе

пишу веб приложения на php ts go py многое повидал

Люблю простой деплой и надежный код

🐝 Раз пчеловодил что скорую вызывал

He ML - глубоко не знаю

Senior Software Engineer

Jan 2023 - Present · 11 mos



X Хакатоню

🛠 Увлекаюсь EDC, часами, steam, умным домом 🙏 За opensource и прозрачные процессы

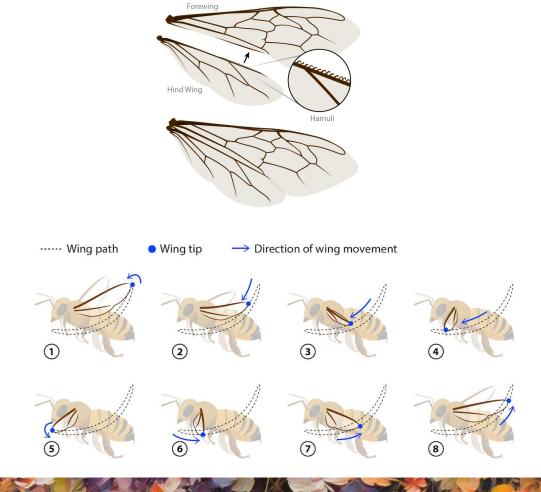
Критик (INTJ) с плохой памятью на имена

Личный опыт

- 2019 Сад = яблони = пчелы
- Курс пчеловодства Kopli Ametikool
- Купил 3 улья
- Купил 2 Buckfast семьи
- Один дикий рой вселился сам
- 2020 7 семей, фото-инспекции
- 2021 7 семей, переезд, плохая зима
- 2022 1 семья, 2 роя, шершни
- 2023 1 семья

Содержание

- Пчелы
- Пчеловодство
- Проблемы
- Существующие решения
- Gratheon.com
- Machine Learning
- 🤯 Deep Learning для зрения
- 🤯 Научные работы по пчелам
- 🤯 Смысловые нейронки
- Модальности
- Будущее и Clarifai.com

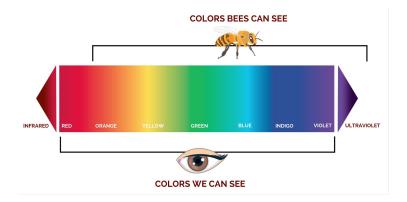


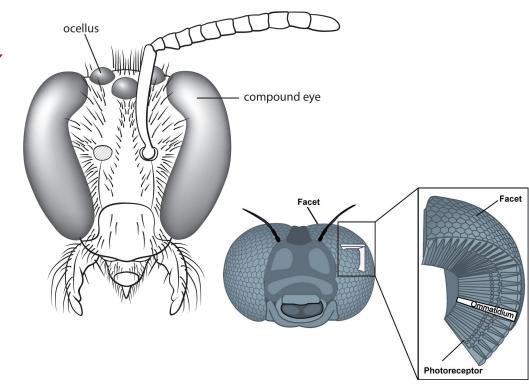
Слайды презентации

Физиология / Крылья

- маленькие
- пара сцеплена крючками
- 230 взмахов в секунду
- улетают на 2-4 км от улья
- 20 65 км/ч

Физиология / Волоски


- осязание в темноте
- волосы + электростатика = магнит пыльцы
- в т.ч. на глазах



Физиология / Глаза

- не видят красный
- трутни лучше видят

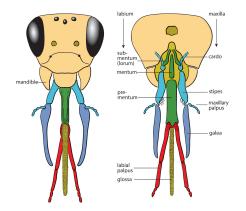
Физиология / Глаза

Глаза рабочей пчелы https://www.flickr.com/photos/usgsbiml/8682047014/in/album-72157664305903459/

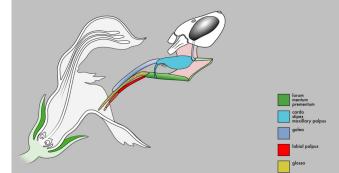
Глаза трутня https://www.flickr.com/photos/usgsbiml/14283379287

Физиология / Глаза

- растения стараются для пчел



Физиология / Рот


выдвижной механизм

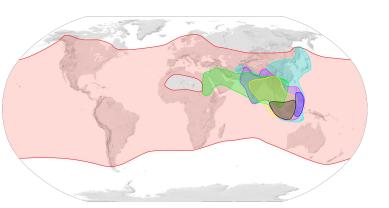
трубочка для нектара

язык

Пчелы и цветы

- 🦖 Первые цветы 170 млн лет назад
- Цветок половой орган размножения
- 20 млн лет общественные насекомые

22000 видов пчел



Пчела канудо, Бразилия Фото: Ясмим Амиден

Медоносные пчелы

~ 8 видов общественных медоносных пчел (10% от всех), например *Apis cerana*

~ Основной вид - Apis Mellifera ~ 40 подвидов (Apis Mellifera Buckfast)

итальянская

карника

среднерусская = европейская темная

горная кавказская

Медоносная Пчела

Apis mellifera

Apis mellifera capensis Подвид

Apis mellifera scutellata

Подвид

Apis mellifera iberiensis

Подвид

Apis mellifera unicolor

Подвид

Apis mellifera adansoni

Подвид

Apis mellifera ligustica

Подвид

Apis mellifera carnica

Подвид

Apis mellifera mellifera

Подвид

Apis mellifera caucasia

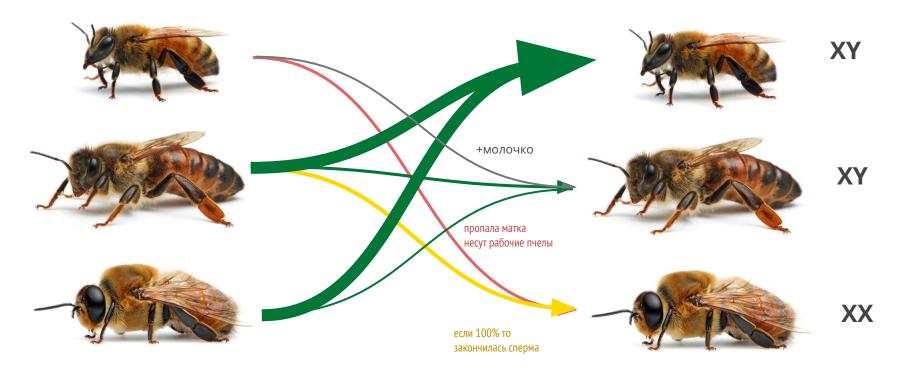
Подвид

Половой диморфизм и специализация

рабочие пчелы

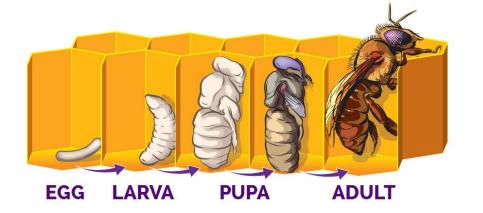
- чистка сот
- согревание яиц
- кормление расплода (пыльцой)
- строительство сот
- защита входа
- сбор нектара и пыльцы

матка


- откладывание яиц (до 2000 в сутки)
- одухотворение

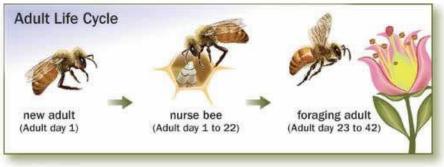
трутни

- оплодотворение чужих маток
- погибают в конце лета



Гаплодиплоидия и непорочное зачатие

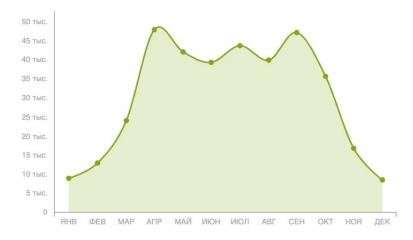
Развитие

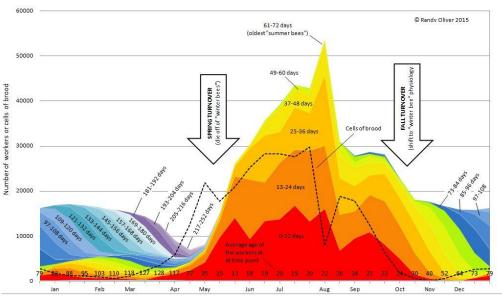


куколка, фото Marco Moretti

Цикл жизни рабочих летом

ЛЕТОМ- по 21 день
до "рождения" → взросления → в поле




Bustrations: Marguente Mayer

Популяция в течение года

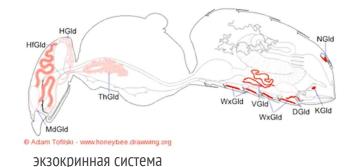
- 10-80 тыс рабочих пчел
 - время жизни варьируется
 - зависит от многих факторов
- сотни трутней
- 1 матка (3-5 лет)

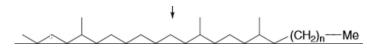
Возраст и количество пчел в зависимости от времени года с зимовкой в сарае. Канада

Роение

Естественное размножение суперорганизма

Июнь-июль 15 мин Рой забирает с собой мед Очень заряженный стартап





Общение / запахи

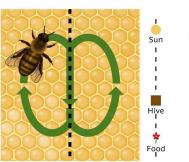
> 50 обнаружено, 10 синтезировано спирт, духи, сигареты, пот раздражает

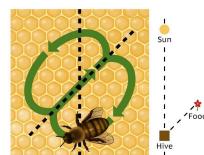
- 🔐 свой-чужой
- Матки QMP
 - подавляет репродуктивность работников
 - о свита разносит запах по улью
- 🌼 полевые (межвидовые метки на цветах на 1ч, путь)
- расплод → "накорми меня", "собери больше пыльцы"
- работники
 - специализация % полевых
 - о 🗼 маяк дома
 - 🎤 🍌 опасности. isopentyl acetate + 24 компонентов

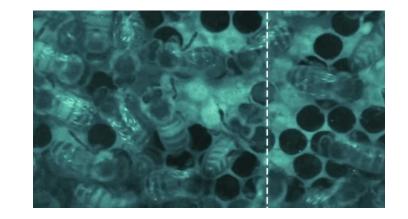
Общение танцем

танец Аристотель, Karl von Frisch

антенны


звук


- раздражение пчеловодом
- начало и конец рабочего дня

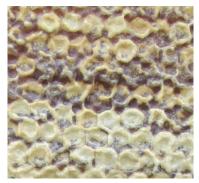


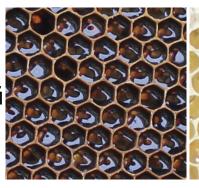
Hive

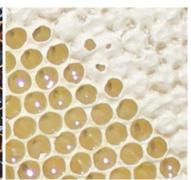
WAGGLE DANCE

Воск

- Выделяется специальными железами
 - развиты к 12 18 возрастному дню
 - Строительный материал
 - минимальное количество для 3д сот
 - темнеет / загрязняется по мере использования
- Прекрасно горит


Пчела выделяет воск Фото A Spürgin


Мед


- Способ долгосрочного хранения энергии
- Нектар собирается с растений с 50% влажностью
 - может забродить
- Переносится в специальном мешочке
- Вода испаряется < 20% влажность
- Закрывается восковой крышечкой
- до 100 кг / сезон

По источнику

- монофлерный, полифлерный, падевый

Перга / Пчелиный хлеб

- Утрамбованная пыльца + выделения
- Полита нектаром/медом, молочной кислотой
- Ферментируется в безвоздушной среде
- в основном для расплода
- 40 кг/сезон

Прополис

- клей / строительный материал
 - заделывать дыры от сквозняка
- смолы (50%), воск (30%)
- эфирные масла (10%), пыльца (5%)
- антибактериальные свойства

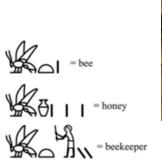
прополис

История

История пчеловодства / неолит

Araña Caves or the Spider Caves ~ Bicorp Валенсия, Испания **-8 тыс до нэ**

Сбор безумного меда. Племена Гурунг, Непал



История пчеловодства / Древний Египет

"Я беру тебя в жены... и обещаю доставлять тебе ежегодно 12 банок меда"

Apis mellifera lamarckii

мед = бит пчелы = слезы солнца улья из глины кочевка пчел по Нилу фараон - повелитель пчел

Сбор меда. В гробнице дворянина и визиря Рекхмире. ~1450 до нэ (ТТ 100)

Изображение пчелы (Apis mellifera lamarckii) в Гробнице фараона Сети I (KV17), Долина Королей

История пчеловодства / майя

Melipona beecheii - без жала, 1-2 л меда / год

апикультура => мелипоникультура рядом с домом ~ 8 колоний

Ah-Mucen-kab, бог меда у Майя Meliponiculture in Mexico: Problems and perspective for development José Javier G Quezada-Euán, William De Jesús May-Itzá, Jorge A González-Acereto

пчелиный домик (nahil-kab) https://voutu.be/d_pioDxwYS8

дупла и каменные заглушки (hobones)

Melipona beecheii https://www.inaturalist.org/observations/187547762

История пчеловодства / Индия

"Цветок без пчелы подобен молодой деве без любовника"

Несколько видов (Apis cerana indica, Apis dorsata, Apis florea, Tetragonula iridipennis)

Мадхава - апрель, Индра, Кришна, Вишну.

Отсюда мед и mead (медовуха)

Apis dorsata https://www.inaturalist.org/observations/192283450

Сапетки

Корзины "Telling the bees"

Борть / Русь, Башкирия

5-17 вв

Борть - деревья с дуплами Надо защищать от медведя Трудно залезть на дерево

Колоды

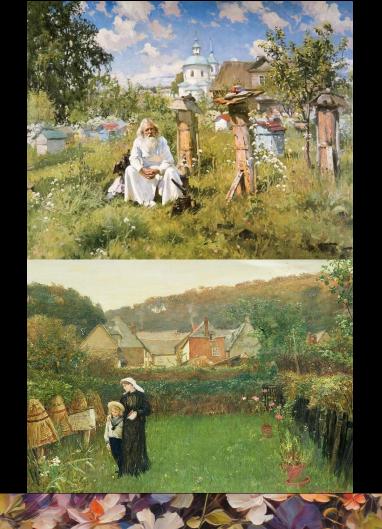
поближе к дому вырубка леса теплоизоляция почти естественная среда

Японский безрамочный улей

Apis cerana japonica

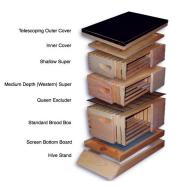
- квадратное сечение
- довольно узкий 22см

История



Разговоры с пчелами

Telling the bees — традиция, в которой пчелам рассказывают о важных событиях, включая смерти, рождения, браки, отъезды и возвращения в семье пчеловода.



История

1792- François Huber (Швейцария) стеклянный наблюдательный улей как книга

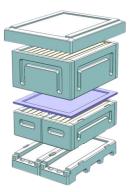
1814 - Прокопович (Российская империя/Украина) рамочность

1835 - Дзержон (Пруссия/Польша) 8мм пространство передвижные рамки

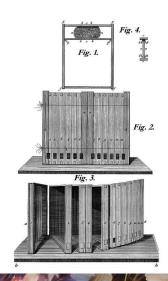
1851 - Лангстрот (US)

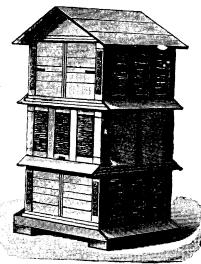
модульные прямоугольные корпуса вертикальный модульный улей, 8-10 рамок передвижные рамки, подставка разделитель - матка внизу 6-9 мм - пчелиное пространство над рамками корпуса надстраиваются (super) сверху

1869 - Amos Root (US) - предприниматель


1853 - Берлепш **1874 - Дадан** (US) большое гнездо 10-12 рамок

1950 - Варре (FRA) 30x30x21 см = квадратные корпуса 9 рамок крыша с юбкой корпуса добавляются снизу = ротация сот





История улья

- 1792- François Huber (Швейцария)
 - стеклянный наблюдательный улей как книга
- 1814 Прокопович (Российская империя/Украина)
 - рамочность
- 1835 Дзержон (Пруссия/Польша)
 - 8мм пространство
 - о передвижные рамки

История улья - Лангстрот/Рут

75% в мире рамка 48х23 cm

- 1851 Лангстрот (US)
 - модульные прямоугольные корпуса
 - вертикальный модульный улей, 8-10 рамок
 - о передвижные рамки, подставка
 - о разделитель матка внизу
 - о 6-9 мм пчелиное пространство над рамками
 - о корпуса надстраиваются (super) сверху
- 1869 Amos Root (US) предприниматель

Telescoping Outer Cover

Inner Cover

Shallow Super

Medium Depth (Western) Super

Queen Excluder

Standard Brood Box

Screen Bottom Board

Hive Stand

История улья - Дадан и Варре

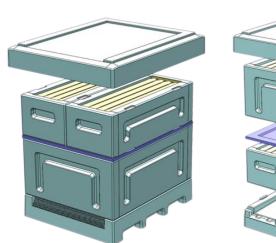
- 1853 Берлепш
- 1874 Дадан (US)
 - большое гнездо 10-12 рамок
- 1950 Émile Warré (FRA)
 - 30х30х21 см = квадратные корпуса
 - ∘ 9 рамок
 - о крыша с юбкой
 - корпуса добавляются снизу = ротация сот

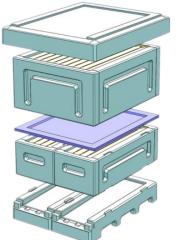
warre hive фото timberbee.com

История улья

- Горизонтальный улей / лежак
- Top bar
- Удобней человеку

Апидомик


апитерапия

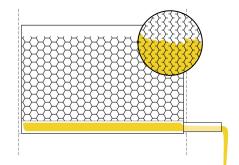


Современные улья

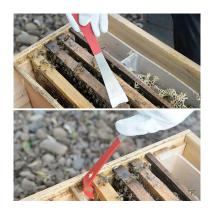
- полистирол ~120 EUR
- 10 рамок ~ 25 EUR
- легкий и теплый

Современные улья

- Утепленная фанера
- ~160 EUR

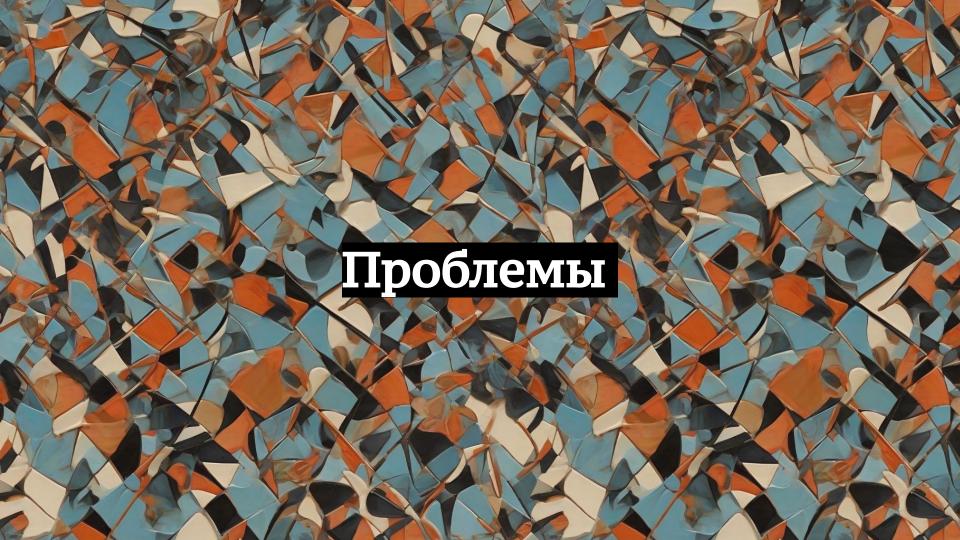


Современные улья


- Flow hive (2015) ~ 780 EUR
 - Австралия
 - о пластик
 - кристаллизация
 - о мед-по-заказу = нет инспекций
- Китайский аналог ~ 370 EUR

Инструменты

- Медогонка ~ 600 EUR
- Дымарь ~ 35 EUR
- Костюм



Промышленное пчеловодство

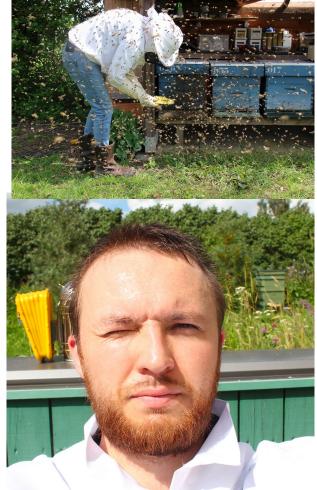
- Апилифт

Неизвестность развития семьи

- матки нет?
 - добавить матку
- слабая семья?
 - объединять
- маточники?
 - разделять
- голодают?
 - добавить рамок
- болеют?
 - лечить

Заболевания и опасности пчел

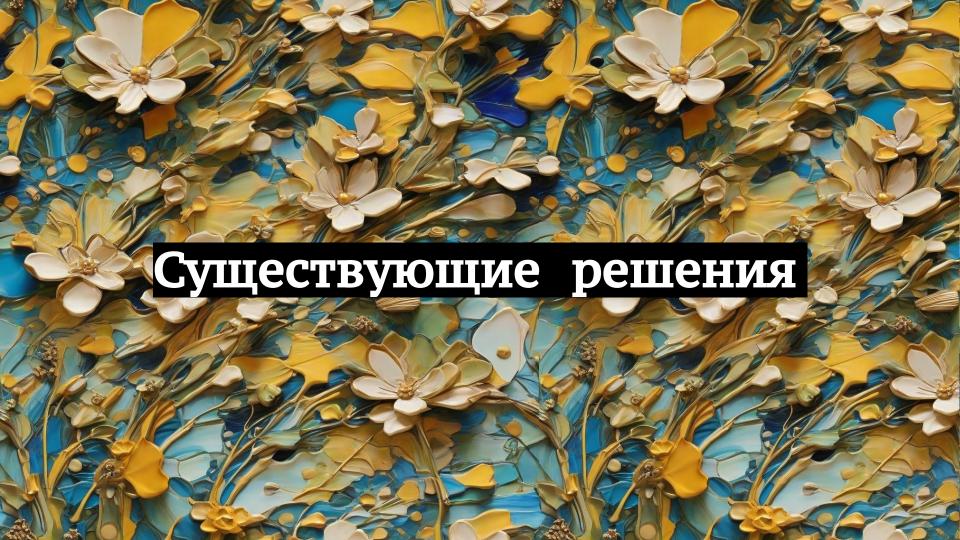
- паразиты
 - клещ варроа (Varroa destructor)
 - трахейные клещи
- вирусы
 - хронический паралич (CBPV, IAPV, LSV)
 - colony collapse из-за IIV-6?
- бактерии
 - foulbrood (American / European)
 - nosema
- грибок
 - chalkbrood, stonebrood
- **шершни,** мыши, восковая моль, ульевой жук
- отравление пестицидами, замерзший расплод



Разрушение крыльев из-за вируса вызванного варроатозом. фото Philippe Psaila, science.org

Напряжно

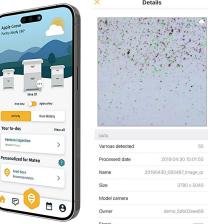
- тяжелые корпуса
- жарко
- в перчатках неудобно
- опасненько
 - дикие пчелы злятся сразу
- ограниченное время (днем и в солнечную погоду)
- регулярность инспекций



Местоположение, время и масштабы

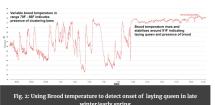
- пасека за городом
 - несколько пасек, далеко ездить
 - в лесу и с медведями
- в городе
 - но с шершнями
 - но с соседями и детьми
- не масштабируемо

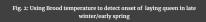




Приложения

- BeeScanning
- ApiZoom
- HiveTracks
- HiveBloom
- BeeQueenDetector
- apimanager
- apiary book


Дневники. Помогают само-организовываться



ІоТ / Аналоговые метрики

- beep.nl opensource
- beehero.io 42M \$\$
- broodminder.com
- beelab.se
- intelligenthives.eu
- beehivemonitoring.com
- solutionbee.com
- beehivemonitoringusa.com
- osbeehives.com
- beesage.co

IoT / Beehero.io

- Израиль
- Подняли 42 М
- Для фермеров
- точечное опыление (миндаля)
- аналоговые метрики
 - звук
 - температура
 - влажность

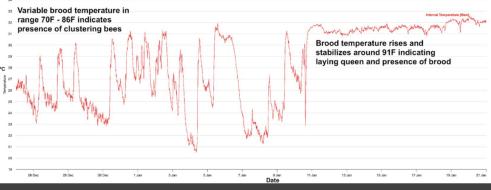
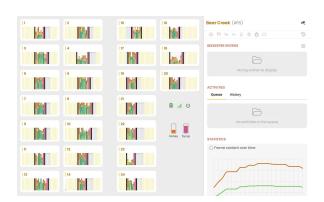



Fig. 2: Using Brood temperature to detect onset of laying queen in late winter/early spring

BeeMate.buzz

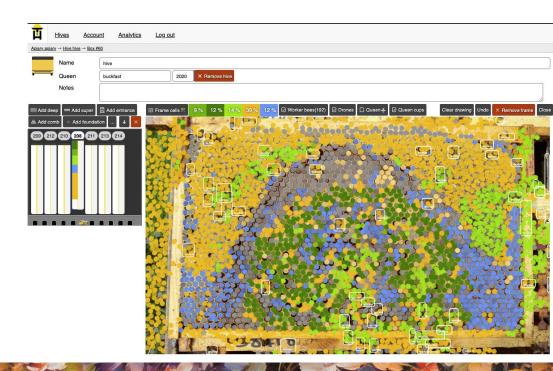
- Австралия
- счетчик пчел 340 eur



видео со входа beemate.buzz

Beewise

- Израиль
- 12/24 колонии
- 400\$ / мес
- Подняли 120 М

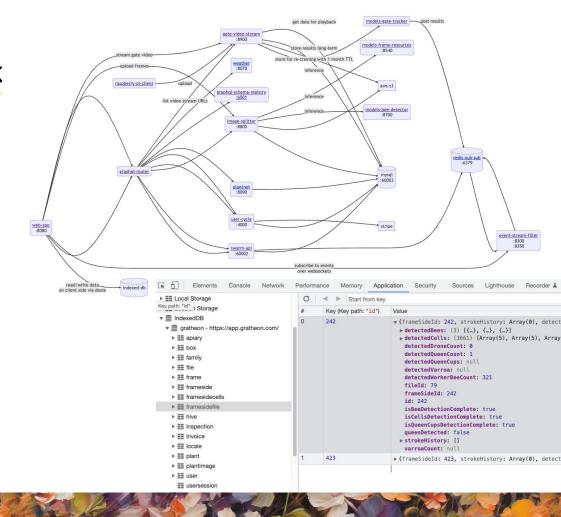


Автоматизация пчеловодства 🐝 с Al зрением, роботами 🤖 и спутниковыми данными 🛰

- **У** управление пасекой, ульями, фото рамок
- Нахождение объектов на фото
 - Матка и маточники
 - **Г** Пчелы
 - **С**оты
 - 🗸 Клещи
- 🗹 Graphql API
- ✓ LLM помощник
- Мобильное приложение

OpenSource + API

- □ Тренировка на пользовательских данных
- □ Ручные инспекции
- □ Аналитика для поиска корреляций
- □ Оповещения


Gratheon.com tech stack

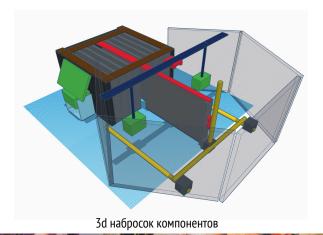
- Preact + React
- Canvas
- Typescript
- Dexie + IndexDB <u>https://github.com/Gratheon/web-app</u>

urql + GraphQL (federation + subscriptions)

- go, typescript
- python модели → CPU inference
- redis \rightarrow pub-sub
- AWS S3 +MySQL + БД под сервис →
- Хочется InfluxDB + Grafana

Docker, DigitalOcean

- □ Видео-мониторинг входа в улей
- □ Нахождение шершней
- □ Видео стрим/запись (HLS / MPEG-DASH)
- □ Обработка на устройстве / в облаке
- □ Интеграция с умным домом (home assistant / tuya)


Испробован BeeAlarmed на своем улье

pp bee counter

static robot

- □ Стационарный робот на одну семью
- □ Выдвижение рамок
- □ Отсылка фото для приложения

визуализация leonardo.ai

bee

static robot

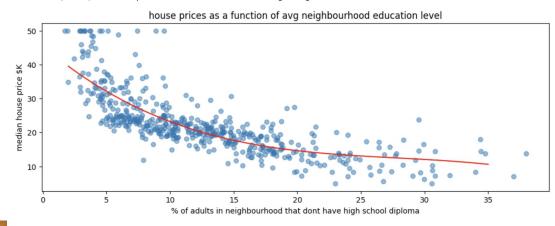
moving robot

- □ Двигающийся робот для инспекции пасеки
- □ На колесах или на рельсах
- □ Изъятие рамки с медом
- Перестановка рамки с расплодом между семьями
- □ Удаленное управление

визуализация leonardo.ai

swisslog рельсовый робот в логистическом центре

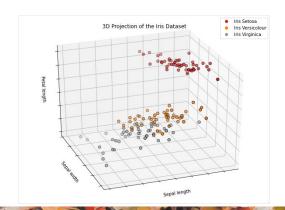
Регрессия


Обобщение, упрощение от набора данных до простой формулы и коэффициентов упорядоченность

```
import numpy as np
from sklearn.kernel_ridge import KernelRidge

model = KernelRidge(alpha=1, kernel='poly')
model.fit(boston.data[:,[12]], boston.target.flatten())
predictions = model.predict(np.linspace(2,35)[:,np.newaxis])

plt.scatter(boston.data[:,12], boston.target, alpha=0.5)
plt.plot(np.linspace(2,35), predictions, c='red')
plt.ylabel('median house price $K')
plt.xlabel('% of adults in neighbourhood that dont have high school diploma')
plt.title('house prices as a function of avg neighbourhood education level')
```


Text(0.5, 1.0, 'house prices as a function of avg neighbourhood education level')

Классификация

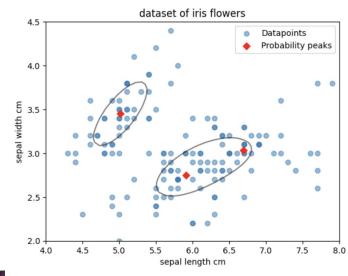
Разделение массива по каким-то выделяемым признакам

классы неупорядоченные true/false тоже классы


```
from sklearn import mixture
import numpy as np

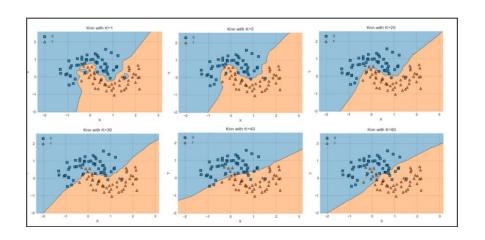
model = mixture.GaussianMixture(n_components=3, covariance_type='full')
model.fit(iris.data[:,[0,1]])

x,y = np.linspace(4.0, 8.0), np.linspace(2.0, 4.5)


X,Y = np.meshgrid(x,y)

Z = -model.score_samples(np.array([X.ravel(), Y.ravel()]).T).reshape(X.shape)

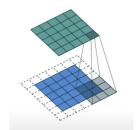
plt.contour(X,Y,Z, levels=np.logspace(0,10,1), cmap="gray", alpha=0.5)
plt.scatter(iris.data[:,0], iris.data[:,1], alpha=0.5)
plt.scatter(model.means_[:,0], model.means_[:,1], marker='D', c='r')

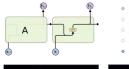

plt.ylabel("sepal width cm")
plt.xlabel("sepal length cm")
plt.title("dataset of iris flowers")
plt.legend(['Datapoints', 'Probability peaks'])
```

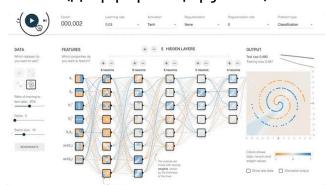
<matplotlib.legend.Legend at 0x13ceb8fa0>

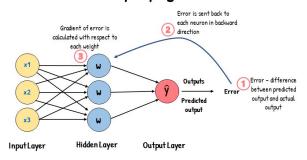
И много всего другого

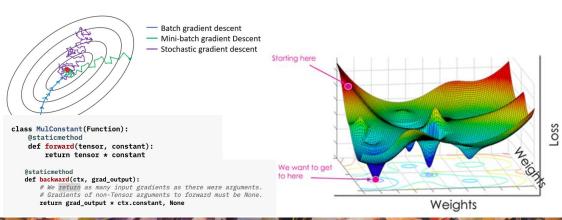
Linear Regression Logistic regression **Decision Trees Naive Bayes Support Vector Machines** KNN Random Forest Ridge regression Lasso Elastic-Net Least Angle Regression Orthogonal Matching Pursuit **Bayesian Regression** Quantile Regression Perceptron **Gradient boosting**


Слои

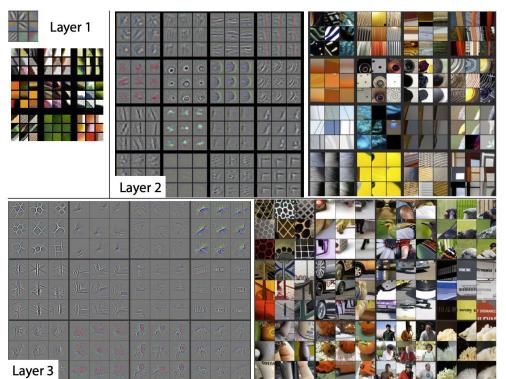

- полносвязные (**dense**, fully-connected)
- подвыборка (**pooling**) уменьшение размерности
 - max, avg, global avg
- activation (relu, softmax, sigmoid..)
- сложение (add)
- сверточные (**convolution**, weight) фильтрация через kernel для выделения фич
 - dilated convolution
 - сдвиг (**stride**) kernel по входу для скорости
 - padding
- нормализация (**batch norm**) баланс сигнала в сети
- обратная связь (у **feed-forward** нет, recurrent есть)
- регуляризация обобщение вместо зубрежки
 - dropout случайное удаление узлов
 - augmentation, random crop, flip, noise, brightness

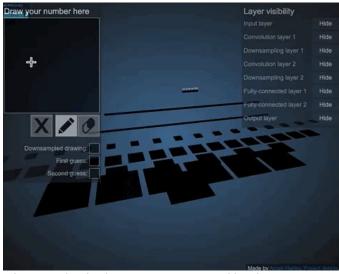



Обратное распространение ошибки


- Поиск наилучших весов через минимизации ошибки (loss) в N-мерном пространстве
 - Производная → Градиент
 - Векторы → Матрицы → Тензоры
- Гипер-параметры.
 - Как спускаться. Эпохи, batching
 - Когда остановиться. Overfitting, validation

 Узлы должны быть обучаемы (дифференцируемы)



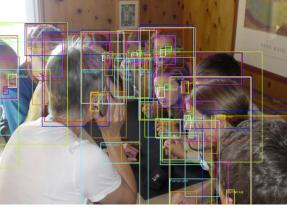

Backpropagation

Автообучение свойствам

https://adamharley.com/nn_vis/cnn/3d.html

Visualizing and Understanding Convolutional Networks

M. Zeiler, R.Fergus

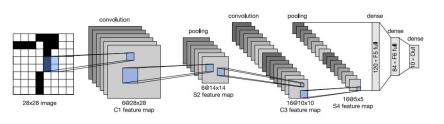

Наборы данных (datasets)

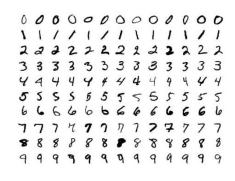
Отличаются:

- модальностью (картинка, текст..)
- областью (общие vs биология vs электроника)
- количеством и качеством картинок
- классами
- разрешением рх
- разметкой (class, bbox, segmentation, pose)

- PASCAL VOC12 11k
- MNIST 60k 28x28px
- CIFAR-10 60k 32x32, 10 классов
- COCO 328k
- iNaturalist 675k, 5k классов
- IMAGENET 14M
 - 1M c bbox
- Cityscapes + 30 классов
- OpenImages V6 9M imgs
- JFT300M закрытый dataset 303M картинок, 18k классов

https://paperswithcode.com/datasets https://universe.roboflow.com/ https://huggingface.co/datasets

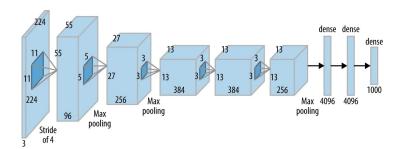

albumentations lib \rightarrow


Прорывные визуальные нейронки

- 1998 LeNet-5. 7 слоев.
- 2012 AlexNet 8 слоев. 81M параметров
 - 2013 ZFNet ← Clarifai 👺
 - 2014 VGGNet. 16 слоев. 138M.
 - 2014 GoogLeNet. 22 слоя → Inception v3
- 2015 ResNet. 152 слоя
- 2014 R-CNN → Fast R-CNN → Faster R-CNN
- 2015 YoLo
- 2015 U-Net
- 2017 DenseNet
- 2017 MobileNet
- 2019 EfficientNet

Классификатор / LeNet-5 (1998)

MNIST dataset вход 24x24 выход 10 классов Sigmoid 5 слоев


Gradient-Based Learning Applied to Document Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

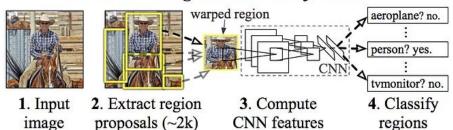
Классификатор / AlexNet (2012)

вход - 224x224px выход - 1000 классов ReLu ImageNet dataset 8 слоев

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto
128cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto

```
class AlexNet(d21.Classifier):
   def __init__(self, lr=0.1, num_classes=10):
       super().__init__()
       self.save_hyperparameters()
       self.net = nn.Sequential(
            nn.LazvConv2d(96. kernel_size=11. stride=4. padding=1).
            nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2),
            nn.LazyConv2d(256, kernel_size=5, padding=2), nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.LazyConv2d(384, kernel_size=3, padding=1), nn.ReLU(),
            nn.LazyConv2d(384, kernel_size=3, padding=1), nn.ReLU(),
            nn.LazyConv2d(256, kernel_size=3, padding=1), nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2), nn.Flatten(),
            nn.LazyLinear(4096), nn.ReLU(), nn.Dropout(p=0.5),
            nn.LazyLinear(4096), nn.ReLU(),nn.Dropout(p=0.5),
            nn.LazyLinear(num_classes))
        self.net.apply(d21.init_cnn)
```


Детектор / R egion CNN (2014)

Найди интересные регионы (2000), для каждого региона, классифицируй, верни ХҮ прямоугольники и вероятность

- очень медленно (47 сек на GPU)
- искажение регионов
- точно но сложно (много шагов)

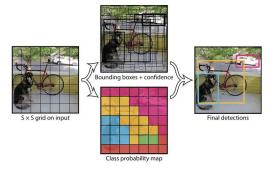
Region-based-CNN \rightarrow Fast R-CNN \rightarrow Faster R-CNN. DensePose \rightarrow Detectron2

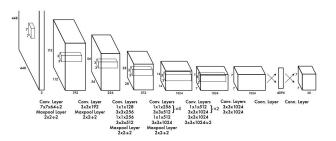
R-CNN: Regions with CNN features

Rich feature hierarchies for accurate object detection and semantic segmentation Tech report (v5)

> Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik UC Berkeley

> > {rbg, jdonahue, trevor, malik}@eecs.berkeley.edu

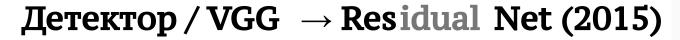




Детектор / YoLo (2015)

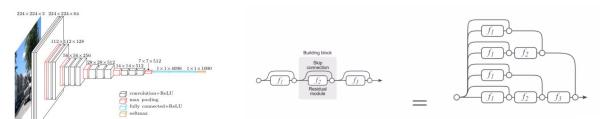
- Разбивает картинку на части. В каждой части предсказывает координаты, класс и уверенность
- Быстрый. Плохо видит мелкие объекты
- Своя cost-функция и объединения bbox iou
- Больше разрешение 448х448, 24 conv слоя

⇒ DarkNet, Yolo9k, YoLo v5, pp-yolo, YoLo v8; SSD как альтернатива

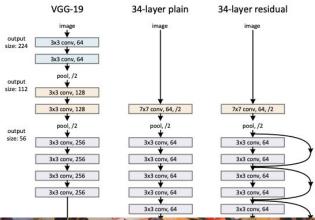

You Only Look Once: Unified, Real-Time Object Detection

Joseph Redmon*, Santosh Divvala*[†], Ross Girshick[¶], Ali Farhadi*[†] University of Washington*, Allen Institute for Al[†], Facebook AI Research[¶]

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21


Table 1: Real-Time Systems on PASCAL VOC 2007. Compar-

	YOLO								YOLOv2
batch norm?		1	V	1	√	✓	1	✓	✓
hi-res classifier?			1	1	1	1	1	1	✓
convolutional?				1	1	1	1	1	✓
anchor boxes?				1	1				3952
new network?					1	✓	1	✓	✓
dimension priors?						1	1	1	✓
location prediction?						1	1	1	1
passthrough?							1	✓	✓
multi-scale?								1	✓
hi-res detector?									✓
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6


- Visual Geometry Group 16 слоев. 138М параметров. 90% в dense слоях
 - классический подход достиг своих пределов точности

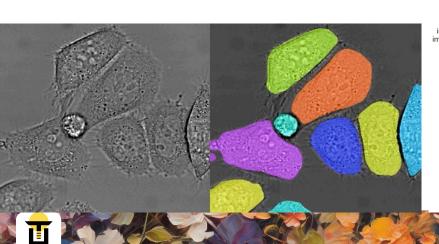
Deep Residual Learning for Image Recognition

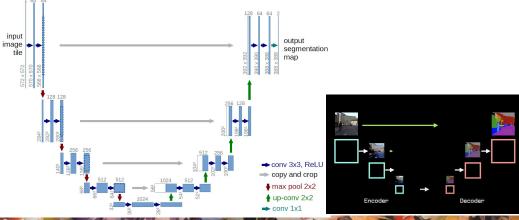
Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research
{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

- ResNet 34 слоя. 21M параметров. 97% convolution, 2% dense
 - промежуточные связи!
 - пробовали 50 слоев, 150, 1200
 - Еще точней, но нужен batch normalization
 - Надежные. Можно выбрасывать блоки
- Улучшения ResNeXt, SENet, Boosted ResNet, RetinaNet, DenseNet, BiT
 - блоки перепрыгивают еще дальше

Сегментация / U-Net (2015)

- encoded + decoder
- контур объекта, близкие объекты со слабыми границами
- Сегментация бывает разной
 - sematnic, boundary, semantic instance
- upscale low-res фотографии
- diffusion models → Dall-E


Ternaus, Mask R-CNN, DeepLab



U-Net: Convolutional Networks for Biomedical Image Segmentation

Olaf Ronneberger, Philipp Fischer, and Thomas Brox

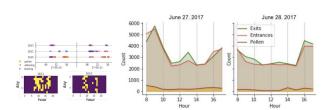
Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany

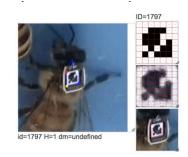
BeeAlarmed

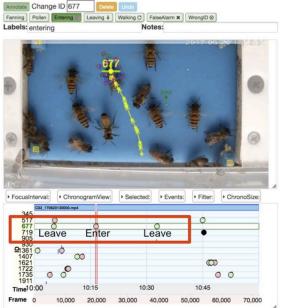
- работа магистра, Германия
- только зеленый фон :(
- detector + classifier
 - судя по коду простой CNN
- 👍 opensource
- пчелы
 - с пыльцой
 - вентилирующие
 - с клещами
- осы
- LoRaWan

LabelBee

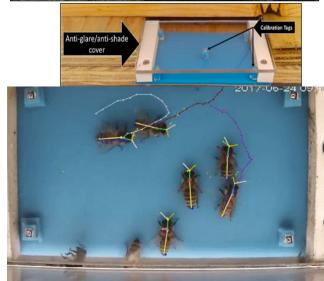
US / Puerto Rico

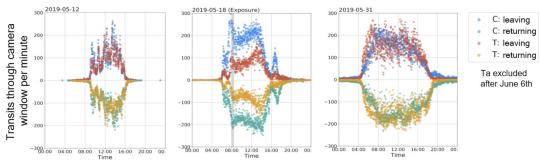

индивидуальный трекинг пчел на входе улья с QR кодами

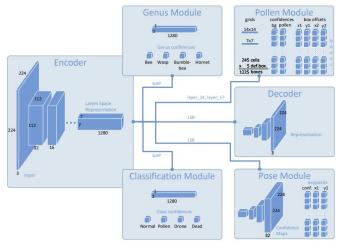

Part Affinity Fields pose estimation

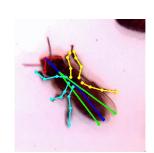


2.6 TB / 8MP cam / 10 семей

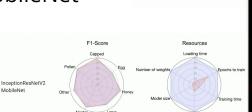

см OpenPose для людей




Apic.ai / DeepBees


- подсчет пчел на входе
- MultiNet несколько модулей
 - классификация видов (шершни)
 - классификация пчел
 - распознавание пыльцы -> MobileNet v2
 - поза
- фокус на анализе опыления
- 14 TB видео, 49 семей
- открыт только dataset

активность пчел до и после лечения https://apic.ai/research.html

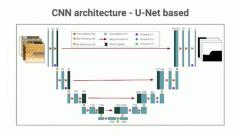


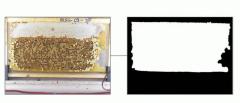
DeepBee - Thiago, Metz et al.

MobileNet (DA)

InceptionResNetV2 (DA)

- contrast filters
- segmentation → U-net
- classification → MobileNet
- pro camera
- 2k frames
- ест 2 гб RAM
- ~ 5 сек
- 👍 opensource


Nectar



0.4

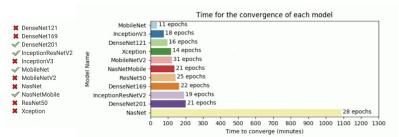
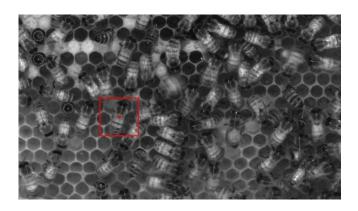

Time distribution to detect and classify all cells in a comb image

Image Load
 Comb Segmentation
 Cells Detection
 Cells Classification
 Total


Dataset Creation

Bozek и др - Honeybee tracking I

трекинг пчел на рамке трудности быстрое движение препятствия видимости (occlusion)

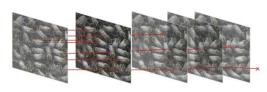
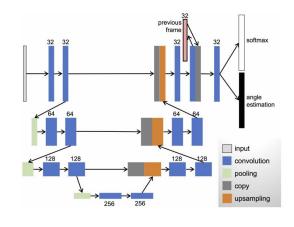
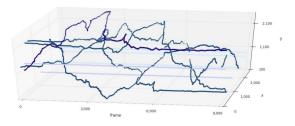
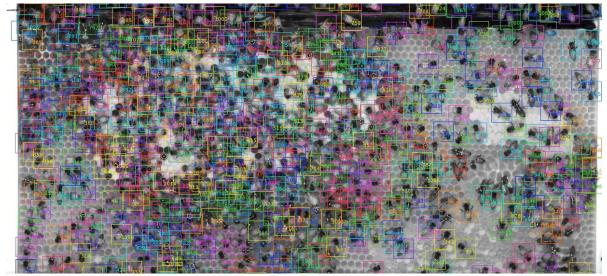
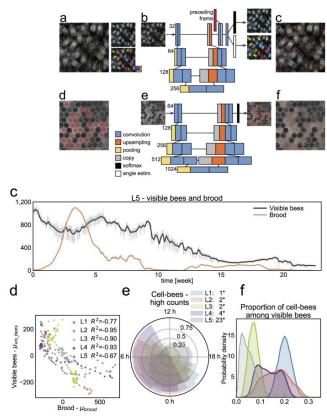




FIG. 2: Object detections are joined into short track fragments using a simple distance metric. We join the



траектория пчел на рамке и во времени


Pixel personality for dense object tracking in a 2D honeybee hive Katarzyna Bozek, Laetitia Hebert, Yoann Portugal, Alexander S. Mikheyev & Greg J. Stephens

Bozek и др - Honeybee tracking II

de opensource + dataset трекинг всей семьи

Towards dense object tracking in a 2D honeybee hive Katarzyna Bozek, Laetitia Hebert, Yoann Portugal, Alexander S. Mikheyev & Greg J. Stephens

BeeNet

Микс двух популярных архитектур

кода нет

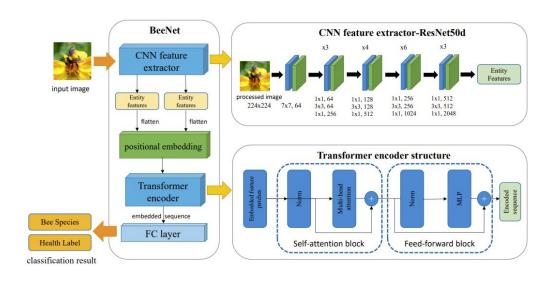
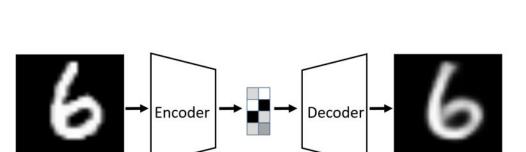


Table 1: Best CNN models and Vision Transformer against 3 bee data sets

Models/Data sets	Bee identification	Varroa detection	Pollen detection	
ResNest	85.08	84.82	96.48	
EfficientNet NoisyStudent	84.63	84.44	96.48	
Vision Transformer 16x16	90.09	88.46	98.74	
Vision Transformer 8x8	90.78	93.24	98.88	
BeeNet	92.45	94.50	99.18	

Автокодировщик и Embeddings

- Autoencoder обучается передачи ввода на вывод с уменьшением размерности в процессе
- В середине получаем **embedding** = latent vector) = абстракция
 - float-векторов в **latent space** (512-мерный например)
- CNN, GPT, BERT на последнем слое embedding → transfer learning


Original

input

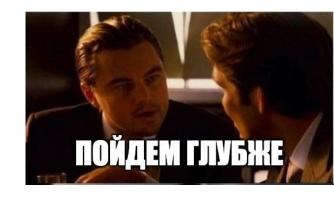
- В чистом виде генерируются предобученными моделями
 - word2vec, sentence2vec, doc2vec, glove, USE, CLIP, ImageBind

Use case:

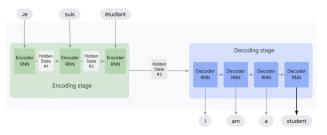
- Компрессия при передаче по сети
- Очистка картинок от шума
- Увеличение frame rate
- Перевод между языками
- Кластеризация
- Семантический поиск
- Рекомендации
- Генерация картинок (из шума)

Compressed

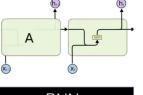
representation

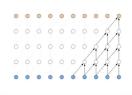

Reconstructed

input


Прорывные смысловые нейронки

- 1986 Autoencoders
- 2003 Neural Probabilistic Language Model
- 2008 Word position
- 2013 Word2vec word embeddings
- 2014 RNN → LSTM, GRU
- 2014 GAN. Две нейронки генерят картинки. Self-play
- 2015 Attention (Luong et al.)
- 2018 ELMo
- 2018 **Transformers** → BERT, GPT, PaLM
- 2020 Visual Transformers (ViT) → DINO
- 2021 S4
- 2021 RAG, CLIP




Recurrent NN (2014)

- Use case
 - перевод текста (**google translate** LSTM)
 - распознавание звука, временные ряды
- RNN = последовательные слои
 - есть скрытое состояние = память
- дорого тренировать
- → Gated Recurrent Unit
 Long Short-Term Memory + attention

RNNs

A group of people

shopping at an

outdoor market.

There are many

vegetables at the fruit stand.

Generating

CNNs

Deep Visual-Semantic Alignments for Generating Image Descriptions

Andrej Karpathy Li Fei-Fei
Department of Computer Science, Stanford University
{karpathy,feifeili}@cs.stanford.edu

Show and Tell: A Neural Image Caption Generator

Oriol Vinyals
Google
Google
Vinyals@google.com
Oriol Vinyals@google.com
Oriol Vinyals@google.com
Oriol Vinyals@google.com
Samy Bengio
Google
Google
bengio@google.com

DEEP CAPTIONING WITH MULTIMODAL RECURRENT NEURAL NETWORKS (M-RNN)

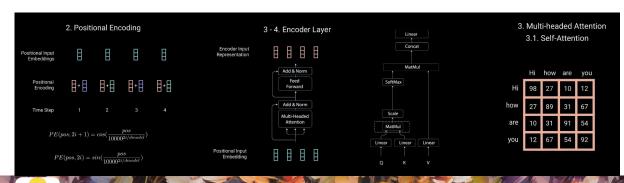
Dumitru Erhan

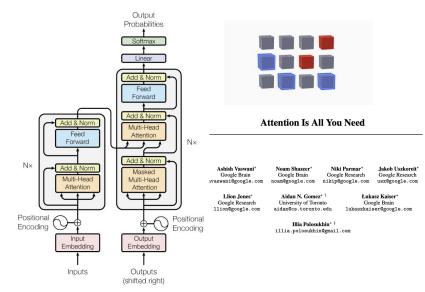
Google

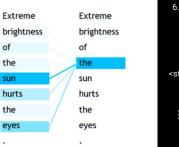
dumitru@google.com

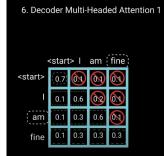
Junhua Mao University of California, Los Angeles; Baidu Research

Wei Xu & Yi Yang & Jiang Wang & Zhiheng Huang

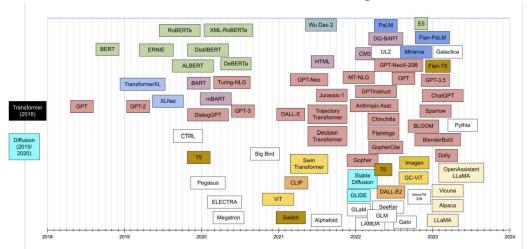

Baidu Research {wei.xu,yangyi05,wangjiang03,huangzhiheng}@baidu.com

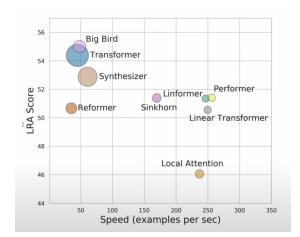

Alan Yuille University of California, Los Angeles yuille@stat.ucla.edu




Transformers (2017)

- Use case перевода текста
- Механизм внимания
 - Абстрактизация нейронок = CPU Von Newman'a
 - Многоголовое внимание = многозначимость
 - Ест много памяти $O(N^2)$ в зависимости от входа
- Оптимизируем/обучаем
 - Остаточные (residual) связи ⇒ backpropagation достает до первого слоя
 - Эффективно тренируется на GPU (параллелизация)
- http://nlp.seas.harvard.edu/annotated-transformer/

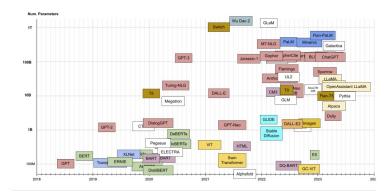
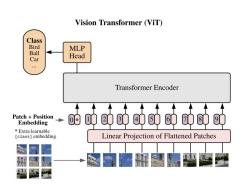


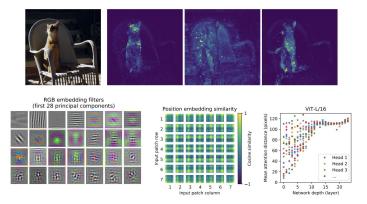


Наследие трансформеров

- Bidirectional Encoder Representations from Transformers (BERT)
- Generative Pre-trained Transformer (GPT)
- скорость генерации vs контекст vs качество воспоминания

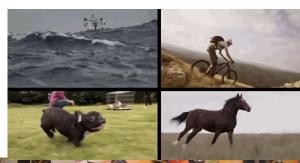
картинки из Transformer models: an introduction and catalog. Amatriain et al


Figure 7: Transformer timeline. On the vertical axis, number of parameters. Colors describe Transformer family.

Visual Transformer (2021)

- Замена CNN на глобальные маски внимания
- 12-32 слоев, 12-16 головок внимания
- Превосходит ResNet152 в точности и скорости обучения при больших данных (ViT vs BigTransfer)
- делит исходную картинку на куски (16х16рх patch = 196 кусков)
- добавляется позиционный embedding
- между раtchами возникает матрица внимания
- ⇒ DeiT, CCT, CaiT, PVT, RadixNet, T2T-ViT, EfficientViT, MaxViT, DINOv2

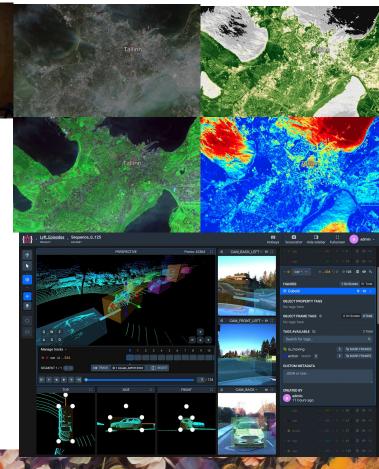

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy⁻¹, Lucas Beyer⁻, Alexander Kolesnikov⁻, Dirk Weissenborn⁻, Xiaohua Zhai⁺, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Usakoreti, Neil Houlsby⁻¹ "equal technical contribution, [†]equal advising Google Research, Brain Team

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron^{1,2} Hugo Touvron^{1,3} Ishan Misra¹ Hervé Jegou¹
Julien Mairal² Piotr Bojanowski¹ Armand Joulin¹

¹ Facebook AI Research ² Inria* ³ Sorbonne University


Модальности

Разные типы данных

- временной ряд
 - температура
 - акции
 - звук
- текст
 - код
 - графики
- изображение
 - многослойное
 - звук
- видео
- облако точек
 - LiDaR

- координаты
- погода
- позы
- Зд модель (для AR/VR и игр)
- сердце, нервы, давление
- прикосновения / haptic
- эмоции человека
- запахи
- гены
- молекулы
- томография
- BCI
- управление роботом
- управление протезом

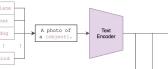
разметка облака точек LiDaR, интерфейс supervisely ightarrow

ϕ ото \rightarrow текст / CLIP (2021)

- Генератор мультимодальных embedding
- Связь картинок с текстом
 - но тренировка происходит не на буквальном тексте на возможных вариантах (Т1..Тп) = на смысле. Как тест в школе
- более глубокое понимание картинки
- Contrastive Language-Image Pre-training

open-clip ru-clip

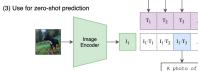
(1) Contrastive pre-training


Pepper the

aussie pup

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford 1 Jong Wook Kim 1 Chris Hallacv Aditya Ramesh Gabriel Goh Sandhini Agarwal Girish Sastry 1 Amanda Askell 1 Pamela Mishkin 1 Jack Clark 1 Gretchen Krueger 1 IIva Sutskever 1

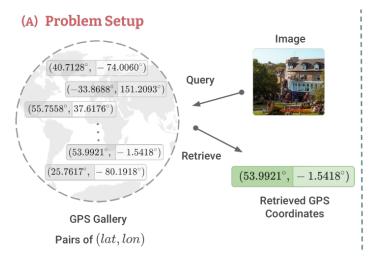


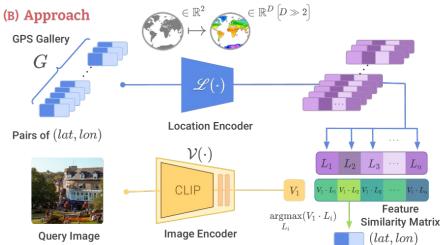
(2) Create dataset classifier from label text

 $I_1 \cdot T_1 = I_1 \cdot T_2 = I_1 \cdot T_3$

 $I_2 \cdot T_1$ $I_2 \cdot T_2$ $I_2 \cdot T_3$

 $I_N \cdot T_1 \mid I_N \cdot T_2 \mid I_N \cdot T_3$




фото \rightarrow GPS (x,y)

GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization

Vicente Vivanco Cepeda, Gaurav Kumar Nayak, Mubarak Shah

Center for Research in Computer Vision, University of Central Florida, USA {vicente.vivancocepeda, gauravkumar.nayak}@ucf.edu; shah@crcv.ucf.edu

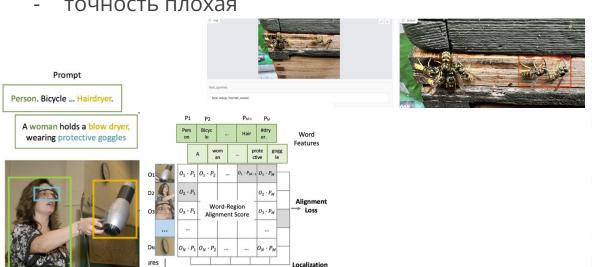
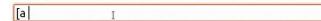


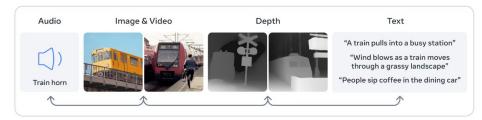
фото - текст / GLIP и OWL-ViT (2022)

Смысловая связь текст ←→ картинка


- модели сами возвращают классы в зависимости от текстового запроса
- точность плохая

Simple Open-Vocabulary Object Detection with Vision Transformers

Matthias Minderer*, Alexey Gritsenko*, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby

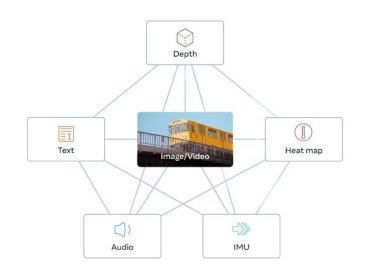


ImageBind (2023)

мультимодальные embeddings

Cross-modal retrieval

Embedding-space arithmetic



Audio to image generation

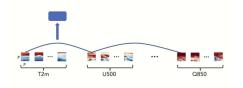
IMAGEBIND: One Embedding Space To Bind Them All

Rohit Girdhar* Alaaeldin El-Nouby* Zhuang Liu Mannat Singh Kalyan Vasudev Alwala Armand Joulin Ishan Misra* FAIR, Meta AI

N фото \rightarrow фото / ClimaX (2023)

ClimaX: A foundation model for weather and climate

Tung Nguyen¹, Johannes Brandstetter², Ashish Kapoor³, Jayesh K. Gupta*², and Aditya Grover*¹ ¹UCLA, ²Microsoft, ³Scaled Foundations


Предсказание погоды Моделирование климата (при другом уровне CO2)

Pretraining на данных (foundational model) Местное предсказание погоды

CMIP6 datasets - очень разные данные температура, давление, влажность, CO2, SO2 снятые в разное время, в разных точках

ViT как основа многоспектральный вход

альтернатива FourCastNet, Pangu-weather, GraphCast

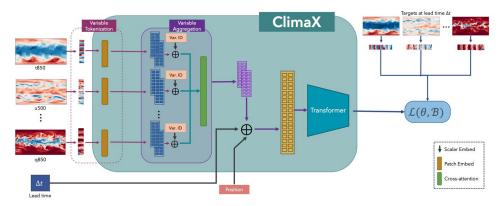


Figure 2: Pretraining phase of ClimaX. Variables are encoded using variable-separate tokenization, and subsequently aggregated using variable aggregation. Together with position embedding and lead time embedding those are fed to the ViT backbone.

ϕ ото \rightarrow сегментация / SAM (2023)

интерактивная сегментация кликами, текстом, маской или bbox

см также SegGPT - сегментация текстом

Segment Anything

Alexander Kirillov^{1,2,4} Eric Mintur² Nikhila Ravi^{1,2} Hanzi Mao² Chloe Rolland³ Laura Gustafson³
Tete Xiao³ Spencer Whitehead Alexander C. Berg Wan-Yen Lo Piotr Dollár⁴ Ross Girshick⁴

ϕ ото \rightarrow сегментация HIPIE (2023)

Hierarchical Open-vocabulary Universal Image Segmentation

semantic segmentation, instance segmentation, panoptic segmentation, referring segmentation, and part/subpart segmentation Xudong Wang¹⁺ Shufan Li¹⁺ Konstantinos Kallidromitis²⁺ Yusuke Kato²
Kazuki Kozuka² Trevor Darrell

¹ Berkeley AI Research, UC Berkeley

²Panasonic AI Research

SAM Grounded-SAM HIPIE (ours)

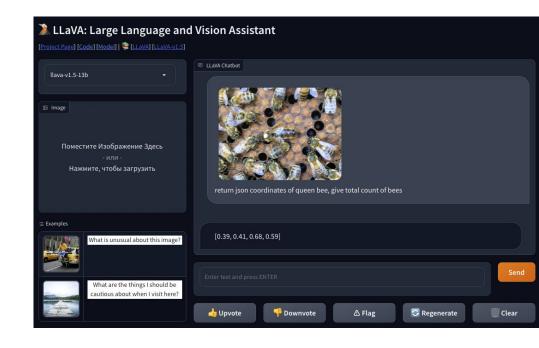
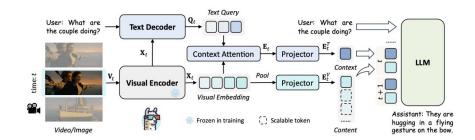
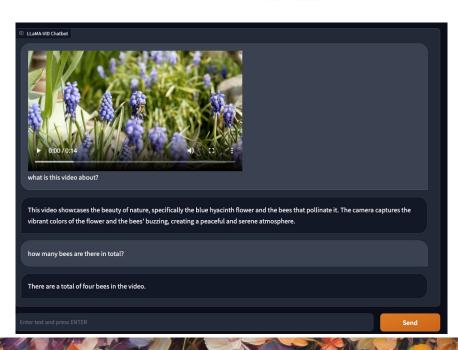


фото + текст \rightarrow текст / LLaVA (2023)

Интерактивный prompting LLM о картинке - верни мне JSON матки

Не надо больше обучать CNN с нуля?

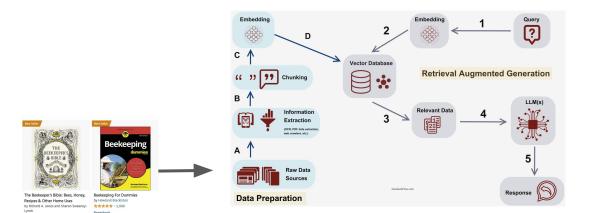



видео + текст LLaMa-VID (2023)

Интерактивный prompting видео

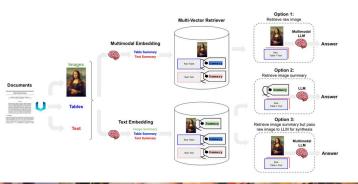
LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models

Yanwei Li^{1*} Chengyao Wang^{1*} Jiaya Jia^{1,2} CUHK¹ SmartMore²



документ + текст \rightarrow текст / RAG

- вместо дополнения контекста своим текстом..
- превращаем любые внешние документы (текст+таблицы+картинки) в embeddings
- при запросе к модели
 - ищем ближайшие векторы
 - дополняем контекст ответами
 - передаем в модель


Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

Patrick Lewis†‡, Ethan Perez*,

Aleksandra Piktus†, Fabio Petroni†, Vladimir Karpukhin†, Naman Goyal†, Heinrich Küttler†,

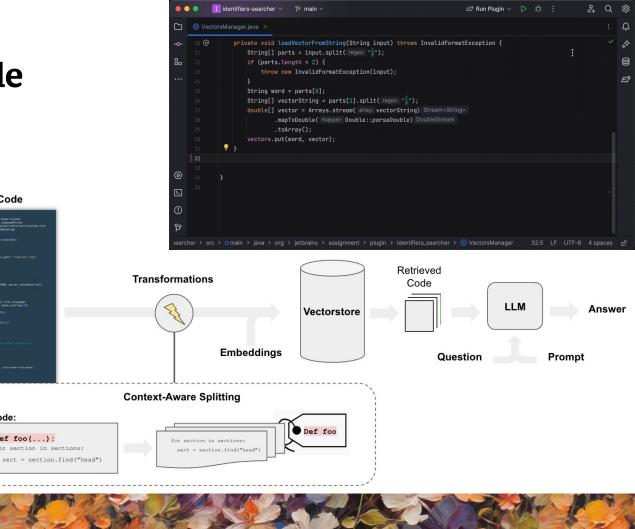
Mike Lewis†, Wen-tau Yih†, Tim Rocktäschel†‡, Sebastian Riedel†‡, Douwe Kiela†

[†]Facebook AI Research; [‡]University College London; *New York University;

$code + text \rightarrow code$

Source Code

Code:


Def foo(...):

for section in sections:

RAG over code

Github copilot

Jetbrains Al assistant

фото + текст \rightarrow код \rightarrow текст / ViperGPT (2023)

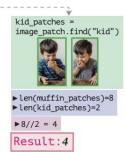
ViperGPT: Visual Inference via Python Execution for Reasoning

Dídac Surís*, Sachit Menon*, Carl Vondrick Columbia University viper.cs.columbia.edu

Генерируем python код Исполняем с учетом что на входе

умеет видео chain of thought (разбиение на шаги)

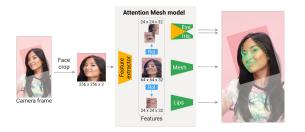
Query: How many muffins can each kid have for it to be fair?

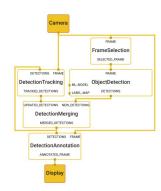


Generated Code

def execute_command(image):
 image_patch = ImagePatch(image)
 muffin_patches = image_patch.find("muffin")
 kid_patches = image_patch.find("kid")
 return str(len(muffin patches) // len(kid patches))

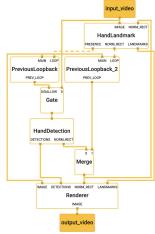
Execution





MediaPipe (2019)

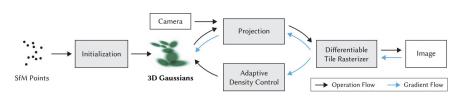
framework / модульный набор


- нахождение лиц
- нахождение жестов рук
- детект позы
- mesh лица

MediaPipe: A Framework for Building Perception Pipelines

Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, Wan-Teh Chang, Wei Hua, Manfred Georg and Matthias Grundmann Google Research

3D Gaussian


Gaussian splatting заменяет облако точек (NeRF)

- structure for motion
- берем облако эллипсоидов
- проецируем на плоскость учитывая размер, порядок и прозрачность
- оптимизируем в растр/текстуру
- используем CUDA kernel → realtime / high FPS

(не использует нейронки)

3D Gaussian Splatting for Real-Time Radiance Field Rendering

BERNHARD KERBL*, Inria, Université Côte d'Azur, France GEORGIOS KOPANAS*, Inria, Université Côte d'Azur, France THOMAS LEIMKÜHLER, Max-Planck-Institut für Informatik, Germany GEORGE DRETTAKIS, Inria, Université Côte d'Azur, France

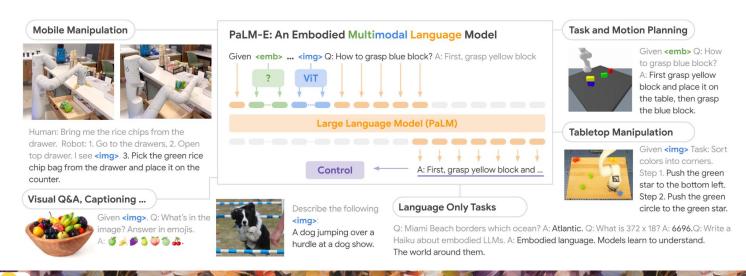
глаза + фото + эмоция \rightarrow 3d

Генерируем 3д аватары сжатый VR в realtime

Latent expression code Gaze e_r (left) e_l Viewing angle $\mathcal{D}_{\{ei,ev\}}$ $\mathcal{D}_{\{ei,ev\}}$

Relightable Gaussian Codec Avatars

Shunsuke Saito, Gabriel Schwartz, Tomas Simon, Junxuan Li, Giljoo Nam Codec Avatars Lab, Meta

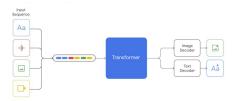


сигнал + фото + текст \rightarrow сигнал / PaLM-E (2023)

для роботов управление объектами

см также Swift для коптеров, RoboCat, RT-2

фото + текст \rightarrow текст + фото / Gemini (2023)


- expert in 57 subjects
- Multimodal-first
- 32k token context length маловато
- tech report для маркетинга
- демо видео монтаж

Question	LLaVA	BakLLaVA	Qwen-VL	CogVLM	GPT-4V	Gemini
How many coins do I have? (VQA)						
Which movie is this scene from? (VQA)						
Read text from the picture (Document OCR)						
What is the price of Pastrami Pizza? (Document VQA)						
How much tax did I pay? (Document VQA)						
Find the dog. (Zero-Shot Object Detection)						
Read the serial number. (OCR)						

сравнение моделей - blog.roboflow.com

Google DeepMind

Gemini: A Family of Highly Capable Multimodal Models

How about this one?

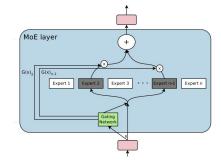
But wait ... what if we asked Gemini to reason about all of these images together?

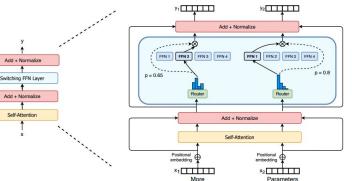
Poct моделей - Mixture of Experts

Параллелизация / разделение части модели на несколько (8) экспертов

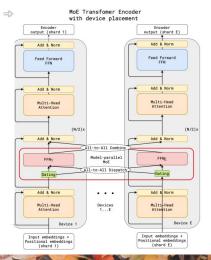
- быстрей inference
- эксперты могут быть на разных GPU
- эксперты специализируются

на токенах, пунктуации, глаголах, союзах, визуальном описании

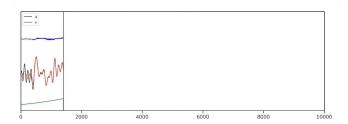

- больше параметров в целом, еще больше VRAM Mistral 8x7B (80GB)


Рутер → эксперт Изначально для LSTM (2017)

В случае трансформеров - несколько FFN Тренировка одновременно обоих


Проблема - дисбаланс экспертов

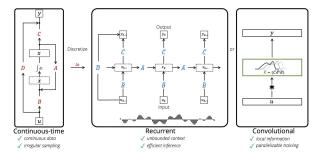
Mistral / GPT-4 https://huggingface.co/blog/moe


SWITCH TRANSFORMERS: SCALING TO TRILLION PARAMETER MODELS WITH SIMPLE AND EFFICIENT SPARSITY

Сжатие контекста - Structured State Space Models (2021)

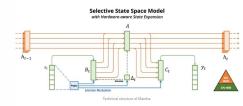
- State Space Model (1960) для последовательности данных, по сути RNN. Vanishing gradient = плохо обучаема
 - $U \rightarrow X \rightarrow Y$
- Упрощает вычисление последовательностей, но с потерями
 - Звук, картинки
 - линейно использует память O(N)
- в 5-60х быстрей трансформеров
- The Annotated S4 https://srush.github.io/annotated-s4/

Hippo → S4 →S5 → Mamba (2023) Hyena, RetNet, RWKW

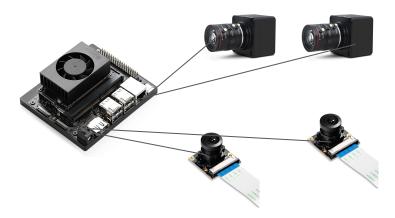


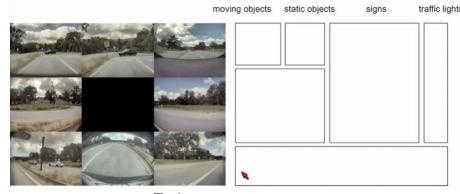
	Model	sMNIST	PMNIST	sCIFAE
Transformers	Transformer (Vaswani et al., 2017; Trinh et al., 2018)	98.9	97.9	62.2
	CKConv (Romero et al., 2021)	99.32	98.54	63.74
CNNs	TrellisNet (Bai et al., 2019)	99.20	98.13	73.42
011110	TCN (Bai et al., 2018)	99.0	97.2	
RNNs	LSTM (Hochreiter & Schmidhuber, 1997; Gu et al., 2020b)	98.9	95.11	63.01
	r-LSTM (Trinh et al., 2018)	98.4	95.2	72.2
	Dilated GRU (Chang et al., 2017)	99.0	94.6	-
	Dilated RNN (Chang et al., 2017)	98.0	96.1	-
	IndRNN (Li et al., 2018)	99.0	96.0	
	expRNN (Lezcano-Casado & Martínez-Rubio, 2019)	98.7	96.6	
	UR-LSTM	99.28	96.96	71.00
	UR-GRU (Gu et al., 2020b)	99.27	96.51	74.4
	LMU (Voelker et al., 2019)		97.15	
	HiPPO-RNN (Gu et al., 2020a)	98.9	98.3	61.1
	UNIcoRNN (Rusch & Mishra, 2021)	-	98.4	-
	LMUFFT (Chilkuri & Eliasmith, 2021)		98.49	-
	LipschitzRNN (Erichson et al., 2021)	99.4	96.3	64.2
SSMs	54	99.63	09 70	91 13

Model	LISTOPS	Text	Retrieval	IMAGE	PATHFINDER	Ратн-Х	Avg
Random	10.00	50.00	50.00	10.00	50.00	50.00	36.67
Transformer	36.37	64.27	57.46	42.44	71.40	х	53.66
Local Attention	15.82	52.98	53.39	41.46	66.63	×	46.71
Sparse Trans.	17.07	63.58	59.59	44.24	71.71	×	51.03
Longformer	35.63	62.85	56.89	42.22	69.71	×	52.88
Linformer	35.70	53.94	52.27	38.56	76.34	×	51.14
Reformer	37.27	56.10	53.40	38.07	68.50	×	50.56
Sinkhorn Trans.	33.67	61.20	53.83	41.23	67.45	×	51.23
Synthesizer	36.99	61.68	54.67	41.61	69.45	×	52.40
BigBird	36.05	64.02	59.29	40.83	74.87	×	54.17
Linear Trans.	16.13	65.90	53.09	42.34	75.30	×	50.46
Performer	18.01	65.40	53.82	42.77	77.05	×	51.18
FNet	35.33	65.11	59.61	38.67	77.80	х	54.42
Nyströmformer	37.15	65.52	79.56	41.58	70.94	×	57.46
Luna-256	37.25	64.57	79.29	47.38	77.72	×	59.37
S4	58.35	76.02	87.09	87.26	86.05	88.10	80.48


Efficiently Modeling Long Sequences with Structured State Spaces ${\it Albert~Gu,~Karan~Goel,~and~Christopher~R\'e}$

Department of Computer Science, Stanford University




Ограничения железа - монолит или микро-

модели

100 разных задач - машины, знаки, путь, статичные объекты

камеры вместе тренируются задачи используют разные камеры ограниченность по GPU, требования по высокому FPS

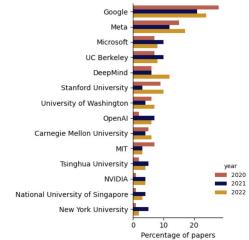
камеры y Tesla → разные задачи и модели "Multi-Task Learning in the Wilderness"

монолит

- эффективность использования VRAM GPU
- подборка датасета под разные задачи оч тяжело из-за разного распределения классов
- остановка обучения у задач происходит в разное время

"микросервисы"

- простота обучения
- независимость команд
- неэффективность взаимосвязи GPU→ RAM → Network
- AutoML?


За кем следить

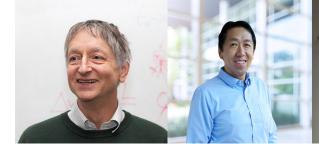
- Google DeepMind
- Google DeepMind / Google Research → BARD, LaMDA, PaLM, Imagen, MusicLM, Gemini
- **⑤** OpenAl

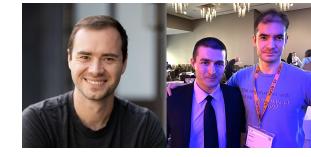
 ANTHROP\C₋
 - OpenAl → GPT, CLIP, Whisper, ImageGPT
- **ANTHROP\C** Anthropic \rightarrow Claude
- \bigcirc Meta AI \rightarrow LLaMa2, Galactica
 - Microsoft
 Research
- Microsoft Research → Orca, phi-2, LayoutLM, LLaVa, Kosmos, table -transformer, diberta, Speech-tts
- **s** cohere
- Cohere
- Mistral Al
- Mistral → Mixtral 8x7B
- **©** NVIDIA.
- NVIDIA → Nemotron, PeopleNet, SegFormer,
 Conformer, Megatron, BioBERT, NeVA, GenSLM, Vista3D
- Runway → Stable diffusion

- Beijing Academy of Artificial Intelligence → BAAI
- TII \rightarrow Falcon

			Arena Elo Rating ting by users)	S 17 December 2023
Company	Model	Elo Rating	License	Observations:
OpenAl	GPT-4-Turbo	1233	Proprietary	OpenAI is still the king of
OpenAl	GPT-4-0314	1191	Proprietary	LLMs, and their models
OpenAl	GPT-4-0613	1157	Proprietary	are getting <u>better</u>
Anthropic	Claude-1	1151	Proprietary	Anthropic is not too far
Anthropic	Claude-2.0	1130	Proprietary	behind, but their models
Anthropic	Claude-2.1	1120	Proprietary	are getting worse
OpenAl GPT-3.5-Turbo-06		1116	Proprietary	Mistral is a very strong
Mistral	Mixtral-8x7b-Instruct	1116	Apache 2.0 ←	new entrant with the best
Anthropic	Claude-Instant-1	1110	Proprietary	Open Source model
Open Source	Tulu-2-DPO-70B	1110	Al2 ImpACT	
01 AI (China)	Yi-34B-Chat	1109	Yi License	Google's Gemini Pro has
Google	Gemini Pro	1106	Proprietary -	not impressed, it is a
OpenAl	GPT-3.5-Turbo-0314	1105	Proprietary	~GPT-3.5 model
Open Source	WizardLM-70B-v1.0	1102	Llama 2	1
Open Source	Vicuna-33B	1096	Non-commercial	A lot of open source rely
Open Source	Starling-LM-7B-alpha	1088	CC-BY-NC-4.0	on Llama 2 or GPT-4
Open Source	OpenChat-3.5	1077	Apache-2.0	outputs for fine tuning
OpenAl	GPT-3.5-Turbo-1106	1077	Proprietary	22 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
Perplexity	pplx-70b-online	1075	Proprietary	Meta's Llama 2 itself is not a very highly
Meta	Llama-2-70b-chat	1074	Llama 2 ←	performant model

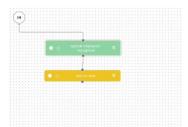
У кого учиться


- Plif :
- MIT Deep Learning Basics → Lex Fridman
 - MIT Introduction to Deep Learning | 6.S191
 - Stanford CS221: Artificial Intelligence: Principles and Techniques
 - Stanford CS229: Machine Learning Course

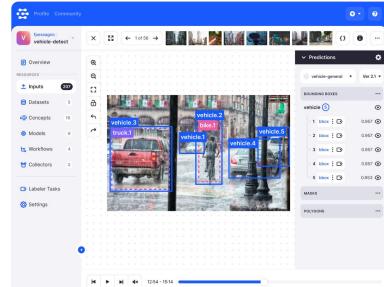

- Stanford CS231n: Deep Learning for Computer Vision
- Stanford CS25 Transformers United
- Stanford CS224N: NLP with Deep Learning
- DeepMind RL Course by David Silver
- Harvard CS50's Introduction to Artificial Intelligence with Python
- Конференции ICML, ICLR, CVPR, MLCON, ICCV

- Geoffrey Hinton, Jeremy Howard, Andrew Ng, Andrej Karpathy
- СПбГУ Сергей Николенко Глубокое обучение
- МГУ Радолав Нейчев Введение в глубокое обучение
- КФУ Евгений Разинков Глубокое обучение

С чего начать


- практический проект
- модальность (текст, картинки, аудио, видео)
- данные → увеличить и сбалансировать
 - свои, ObjectNet, ImageNet, ILSVRC-2012, huggingface, roboflow, datasetninja)
- разметка
- МОДЕЛЬ → transfer-learning + fine-tuning. Pytorch.
- тренировка
 - оценить метрики (mAP), сравнить с другими моделями
- deploy


С чего начать - Clarifai.com



Full-stack AI платформа для

- разметки данных (labeling)
- смыслового поиска (embeddings!)
- обучения моделей
- predicta данных по API
- связки моделей в мультимодальный workflow

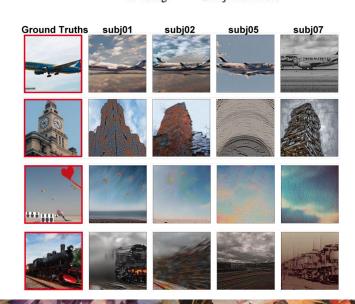
Инструментарий

jupyter google colab

Pytorch Tensorflow Keras CoreML SciKit-learn MXNet CNTK Caffe NLTK ONNX = protobuf rpaфa pickle - serialized python object kubeflow nvidia triton

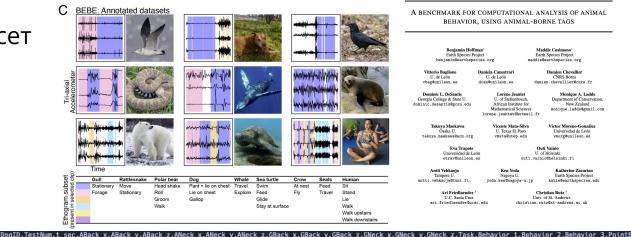
АІ инструментарий

- HuggingFace.co, Stability.ai, Inflection.ai, snorkel.ai, Al21, H2O.ai, scale.ai, gradio.app, octoml.ai, labelbox, supervisely, v7, mosaicml, databricks
- Nvidia Triton, Nvidia NeMo, lamini.ai, adept.ai, character.ai, coreweave, lambda labs


$MRI \rightarrow \phi$ ото / Чтение мыслей (2022)

- fMRI voxel на входе
- картинка на выходе
- CLIP → Stable Diffusion

https://github.com/yu-takagi/Stable DiffusionReconstruction


High-resolution image reconstruction with latent diffusion models from human brain activity

Yu Takagi^{1,2*} Shinii Nishimoto^{1,2}

Bio-logger Ethogram Benchmark

Мультимодальный датасет Разные виды животных

A BENCHMARK FOR COMPUTATIONAL ANALYSIS OF ANIMAL BEHAVIOR, USING ANIMAL-BORNE TAGS

Benjamin Hoffman Maddie Cusimano Earth Species Project Earth Species Project

Daniela Canestrar II. de León vbag@unileon.es dcan@unileon.es

damien.chevallier@cnrs.fr II of Stellenbosch African Institute for

Department of Conservation New Zealand monique.ladds@gmail.com

Mathematical Sciences Vicente Mata-Silva Víctor Moreno-Gonzále II. Texas El Paso Universidad de León

Universidad de León

vmorg@unileon.es

Damien Chevallier

CNRS Borea

vnata@utep.edu U. of Helsink etrav@unileon.es outi vainio@helsinki fi

Antti Vehkaoia

Georgia College & State U.

dominic.desantis@gcsu.edu

Takuya Maekawa

Osaka II

takuya.naekawa@acm.org

Katherine Zacarian

U.C. Santa Cruz

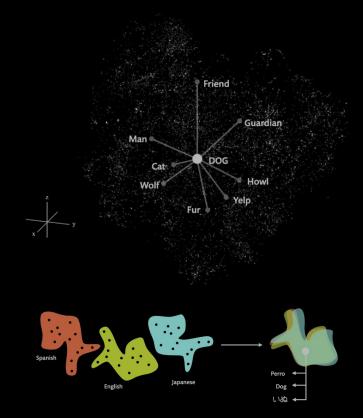
Univ. of St. Andrews

Data Article

Description of movement sensor dataset for dog behavior classification

Antti Vehkaoja a.*. Sanni Somppi b. Heini Törngvist b.e. Anna Valldeoriola Cardó^b, Pekka Kumpulainen^a, Heli Väätäjä^{c,d}, Päivi Majaranta^c, Veikko Surakka^c, Miiamaaria V. Kujala^{b,e}, Outi Vainio b,*

^a Faculty of Medicine and Health Technology, Tampere University, P.O. Box 692, Tampere FI-33101, Finland b Department of Equine and Small Animal Medicine, University of Helsinki, P.O. Box 57, Helsinki FI-00014, Finland Research Group for Emotions, Sociality, and Computing, Faculty of Information Technology and Communication Sciences, Tampere University, P.O. Box 100, Tampere FI-33014, Finland


^d Master School, Lapland University of Applied Sciences, Jokiväylä 11 B, Rovaniemi 96300, Finland Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland

Latent space

- Международный язык
- Модель мира
- Мультимодальный
- Векторные БД как постоянное, назависимое от модели хранилище
- Межвидовой язык
 - главное хороший encoder, decoder и маппинг

Using AI to Decode Animal Communication with Aza Raskin

Наблюдайте за пчелами

они могут вам что-то рассказать

